语言
没有数据
通知
无通知
(1)物の影をうつすこと。 投影。
ヒルベルト空間、零空間、アフィン空間、T1空間、LF空間、離散空間、射影空間、可分空間、位相空間論、コルモゴロフ空間、ハウスドルフ空間、密着空間、商空間、双対ベクトル空間、ノルム線型空間、一様空間、線型位相空間、計量ベクトル空間、確率空間、コンパクト空間、線型部分空間、バナッハ空間、連結空間、関数空間、空間充填、情報幾何学、位相幾何学
射影幾何学において、n 次元射影空間の射影変換(しゃえいへんかん)とは、射影空間の同型写像である。図学的には中心投影変換に相当する。 体 k 上の n 次元射影空間 Pn(k) とは、ベクトル空間 kn+1 から原点を除いた空間を体 k の乗法群 k* のスカラー倍の作用で割った空間 ( k n +
+ 1)-系である(スタイナー系参照)。逆に N ≥ 2 に対するこの形のスタイナー系が射影平面となることが証明できる。 位数 N の互いに直交するラテン方格の総数は高々 N − 1 である。これが N − 1 となりうる必要十分条件は、その位数の射影平面が存在することである。
に写すことができる(三重推移性)。組に属する点の数は、PGL2(K) は三次元なので、これ以上増やすことができない。即ち、この群作用は鋭三重推移的である。このことの計算論的側面として 複比がある。実際、逆のことが一般化された形で成り立つ: 「体」を「KT-体」(乗法逆元をとる操作を適当な種類の対合に一般化する)に置き換え、「PGL」も
\operatorname {Hom} (P,K)\to 0} が完全となる加群 P のことを射影加群と呼ぶ。 R を単位元をもつ環とし、以下では加群はすべて左 R 加群、射はすべて左 R 加群の準同型を指すことにする。 加群 P が射影加群である、あるいは射影的とは次の同値な条件のいずれかが成り立つことをいう。 関手
limit)あるいは射影極限(しゃえいきょくげん、英: projective limit)は、正確な言い方ではないが、いくつかの関連する対象を「貼合せる」ような構成法であり、貼合せの具体的な方法は対象の間の射によって決められている。逆極限は任意の圏において考えることができる。 まず群と準同型からなる逆系 (inverse
星間ガス、固体微粒子からなる星間ダスト、宇宙線や星間磁場、電磁波といった非熱的高エネルギー粒子が存在する(星間ガス・星間ダストを併せて星間物質、さらに非熱的高エネルギー粒子をあわせて広義の星間媒質と呼ばれる)。 宇宙探査機のボイジャー1号は2012年に星間