语言
没有数据
通知
无通知
(1)入れ物に入れることができる分量。 容器の容積。
{\partial H}{\partial T}}\right)_{p}} で表される。 平衡状態の安定性から、等積熱容量は CV > 0 である。 定圧熱容量と定積熱容量の差は、熱膨張係数 α、等温圧縮率 κT と C p − C V = T ( ∂ p ∂ T ) V ( ∂ V ∂ T )
寄生容量(きせいようりょう、英: stray capacity)は、浮遊容量(ふゆうようりょう)、漂遊容量(ひょうゆうようりょう)とも呼ばれ、電子部品の内部、あるいは電子回路の中、またモーターコイルなどの導体とフレームや外部筐体などの導体間、さらに電源ケーブルと床(大地)間など、それらの物理的な構
だったりする。意図的な設計においては、前段の出力と後段の入力の間にキャパシタを直列につなぐ。容量カップリング、容量結合とも呼ばれる。 2個以上のキャパシタを直列and/or並列した場合を指す語である「合成容量」と、用語的に似ているが、基本的に全く関係無いので注意。 アナログ回路の場合について説明する。定性的に言うと、キャパシタは交流
K−1である。 圧力一定の条件下で測定した場合は定圧比熱、体積一定の条件下で測定した場合は定積比熱と呼ばれる。 定圧比熱(ていあつひねつ)とは、圧力一定の条件下で単位量あたりの物質を単位温度変化させるのに必要な熱量。特に1モル当たりの定圧比熱を定圧モル比熱あるいは定圧モル熱容量と呼ぶ。 一般的記号は、cp
工夫を行ってこれをはるかに上回る列車本数が運転されていることもある。 複々線区間においては、複線の線路容量計算方式を援用して計算することができる。複々線区間では、高速列車と低速列車を異なる線路に分けて運転することができるので、その線路
容量の単位であるファラド (farad) を逆につづったもので、電気工学者のアーサー・エドウィン・ケネリーが1936年に命名したものである。1毎ファラドは1ダラフに等しい。 コンデンサ インピーダンス - 容量性リアクタンス アドミタンス - 容量性サセプタンス 放電容量 コイル - インダクタンス
I と終止電圧に達するまでの時間 t の積である。量記号は W、単位としてアンペア時(アンペアじ、アンペアアワー)[Ah] が用いられる。 W = I・t 小型の電池では、ミリアンペア時(ミリアンペアじ、ミリアンペアアワー)[mAh] も用いられる。 例えば540[mAh]とは、540[mA]