语言
没有数据
通知
无通知
すべてが備わっていること。
(1)度数をはかること。
おしはかること。 推測。
英語版)に相当)。完備順序体は同型の違いを除いて実数体ただ一つである(この完備順序体は、束にはなるが完備束にはならないことに注意)。 完備リーマン多様体(英語版) 完備代数多様体(英語版): 代数幾何学において代数多様体が完備であるとは、それがある種のコンパクト性に類似の性質を満足することを言う。 完全性
数学の一分野順序論(英語版)における完備束(英: complete lattice)とは部分集合が常に上限と下限を持つ半順序集合のことである。 完備束は束の重要な例で順序集合論及び普遍代数の研究対象であり、数学及び計算機科学に多くの応用を持つ。 順序集合上の完備性(英語版)には様々な異なる定義があるので注意を要する(例えば完備半順序
数学では、完備圏とは任意の小さな極限が存在する圏である。つまり、すべての図式F : J → C ( Jは小さい)において、Cの極限がある場合、圏Cを完備と呼ぶ。これの双対概念として、 余完備圏とは、任意の小さな余極限が存在する圏である。双完備圏とは、完備と余完備の両方の性質を持った圏である。 表示 編集
解析学におけるハール測度(ハールそくど、英: Haar measure)は、局所コンパクト位相群上で定義される正則不変測度である。ハンガリーの数学者アルフレッド・ハールにその名を因む。 G を局所コンパクト群、B を G のコンパクト集合全体から生成される完全加法族とする。零でない非負値完全加法的集合関数
数学、とくに測度論における外測度(がいそくど, outer measure, exterior measure)は、与えられた集合の全ての部分集合に対して定義され、補完数直線に値をとる集合函数で、特定の技術的条件を満足するものを言う。この概念はコンスタンティン・カラテオドリによって加算加法的測度