语言
没有数据
通知
无通知
id=STS9aZ6F204C 斎藤正彦『線形代数学』(第3版)東京図書、2017年4月10日。ISBN 978-4-489-02179-4。 対称行列 反傾行列 随伴行列 反対称行列 直交行列 双対ベクトル空間 『転置行列の意味・重要な7つの性質と証明』 - 高校数学の美しい物語 表示 編集
巡回行列(じゅんかいぎょうれつ)または循環行列(じゅんかんぎょうれつ、英: Circulant matrix)は、テプリッツ行列の特殊なものであり、各行ベクトルが1つ前の行ベクトルの要素を1つずらして配置した形になっているものである。数値解析において、巡回行列
n)行列を直交行列(またはユニタリ行列)U,Vと対角行列Dに分解 A = UDV* 正方行列 零行列 対角行列 三角行列 ハンケル行列 テプリッツ行列 転置行列 随伴行列 対称行列 エルミート行列 正規行列 - ユニタリ対角化可能な行列のクラス 単位元 - 単位行列 逆元 - 正則行列 - 逆行列 直交行列
(1)正反対に方向を変えること。 また, 大きく方向を変えること。
(1)ぐるぐる回ること。
{U}}(-\infty ,\infty )} が散乱演算子である。この散乱演算子を行列表示したものがS行列である。 散乱過程を始状態から終状態への転移としてとらえる散乱理論では、その転移確率を時間依存シュレディンガー方程式を用いて求める(時間発展についてはシュレディンガー描像から相互作用描像に書き換えてから計算するこ
線型代数学における部分行列(ぶぶんぎょうれつ、英: submatrix)または小行列(しょうぎょうれつ、独: Teilmatrix)は、与えられた行列に対してその行または列を取り除くことで作られる行列を言う。特に正方行列に対して同じ番号の行と列を取り除くことで得られる小行列は主小行列 (principal
数学において、行列群 (matrix group) は(通常は前もって固定される)ある体 K上の n 次可逆行列からなる群 G で、行列の積と逆の演算をもつ。より一般に、可換環 R 上の n 次可逆行列を考えることができる。(行列のサイズは有限に制限されていることに注意。なぜならば任意の群は任意の体上の無限行列