语言
没有数据
通知
无通知
を満たす。さらに、バーチ・スウィンナートン=ダイアー予想が正しければ、合同数はそのような数に限る。 与えられた n に対して、上記の条件を満たすか否か判定するのは易しい。したがって、バーチ・スウィンナートン=ダイアー予想が肯定的に解決されれば、合同数問題も自動的に解けたとみなせる。 さて、n を 8
フルヴィッツのゼータ函数 エプシュタインのゼータ函数 ハッセ・ヴェイユのゼータ函数 伊原のゼータ函数 新谷のゼータ函数 これらとは別に、 ワイエルシュトラスのゼータ関数(英語版) 隣接代数のゼータ関数 ヤコビのゼータ関数(ドイツ語版) レルヒゼータ函数(英語版) もある。 表示 編集
のオイラー積の類似によって定義される。ここに、積はスキーム X の全ての閉点 x を渡るものとする。同じことであるが、積はその点での剰余体が有限である全ての点を渡るものとする。剰余体の点の数を N(x) で表す。 例えば、X を q 個の元を持つ有限体のスペクトルとすると、 ζ X ( s ) = 1 1 −
n で合同な別の数に置き換えてもよいことを示している。これはつまり、法 n で合同な数すべてを一つのあつまり(同値類、合同類、剰余類)として扱えば、法 n に関する加法と乗法がこの類の代表元の取り方に依らずに定まるということになる。同じ類に属する整数は法 n で割った剰余がみな同じであるようなものたちであり、法
〔数〕
フルヴィッツのゼータ函数 (Hurwitz zeta function) はゼータ函数の一種で、名前はアドルフ・フルヴィッツに因む。フルヴィッツのゼータ函数は、Re(s) > 1 なる s と Re(q) > 0 なる q の 2 つの複素数に対して、形式的に以下のように定義される。 ζ ( s ,
(1)二つ以上の物が合わさって一つになること。 また, 一つにすること。
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,