语言
没有数据
通知
无通知
(1)基礎となる底面。
並列 — 直列(回路) 電気抵抗(レジスタンス) — コンダクタンス インピーダンス — アドミタンス 静電容量(キャパシタンス) — インダクタンス リアクタンス — サセプタンス 短絡 — 開放 短絡電流 — 開放電圧 直列の抵抗 — 並列のコンダクタンス キルヒホッフの電流則 — キルヒホッフの電圧則
グレブナー基底(グレブナーきてい、英: Gröbner basis)は、多変数多項式の簡約化が一意に行える多項式の集合である。多変数の連立代数方程式の解を求める際などに利用される(#計算例参照)。 グレブナー基底を求めるアルゴリズムとしては、ブッフベルガーアルゴリズム(英: Buchberger's
を含む複合体マトリゲルなどは、この腫瘍から抽出したものが利用されている。マトリゲルやラミニンなどは、上皮細胞の接着を支持し、分化形質などを保持する機能があるので、細胞培養の基質や支持材料としてしばしば利用される。 生体内の基底膜は、組織や場所によって成分が多様であり、そのことが基底膜が示す多様な機能と関係していると考えられている。
(tijT)−1(転置の逆)で与えられる。すると双対束 E* は fiber bundle construction theorem(英語版) を使って構成される。 例えば、可微分多様体の接束の双対は余接束である。 底空間 X がパラコンパクトかつハウスドルフであれば、実の有限ランクのベクトル束 E とその双対 E*
数学において,ポアンカレ双対性定理は,多様体のホモロジー群とコホモロジー群の構造に関する基本的な結果である.名前はアンリ・ポアンカレにちなむ.定理の主張は以下のようである.M を n 次元の向き付けられた閉多様体(コンパクトかつ境界を持たない)とすると,M の k 次コホモロジー群はすべての整数 k
任意の函数がその離散フーリエ変換から復元することができる。 といったようないくつかの話題を統一的にみることができる文脈に属する。この理論はレフ・ポントリャーギンによって導入され、フォン・ノイマンやヴェイユらの導入したハール測度の概念やそのほか局所コンパクトアーベル群の双対群に関する理論などと結び付けられた。