语言
没有数据
通知
无通知
複偶数(ふくぐうすう、(英: doubly even number)または全偶数(ぜんぐうすう)とは、2で割った数が偶数となる数である。4の倍数。複偶数でない偶数を単偶数(または半偶数)と呼ぶ。 十進法や二進法において下1桁で偶数か奇数かを判別できるのと同様に、底が2の倍数である位取り記数法におい
6, 10, 22, 54, 90, 138 などが単偶数で、−40, −16, 8, 12, 28, 64, 120 などが複偶数である。二進法では、下二桁が 00 になっていれば複偶数である。 位取りの底が複偶数であれば、一の位がどの数かで単偶数か複偶数かを判別できる。例えば、十二進法では 2
(1)偶然。 ちょうどその時。
めったにない・こと(さま)。 まれ。
エ級数に関する理論において重要である。名称は、この性質を満足する冪関数の冪指数の(整数としての)偶奇に由来する(すなわち、関数 f(x) = xn は n が偶数のとき偶関数であり、n が奇数のとき奇関数である)。 この、関数の偶奇性 (parity of function)
(1)木彫りの人形。 また, 人形。 でこ。 もくぐう。
(1)対(ツイ)になっていること。 対称をなすこと。