语言
没有数据
通知
无通知
数学において、二項関係(にこうかんけい、英: binary relation)あるいは二変数関係 (dyadic relation, 2-place relation) は、集合 A の元からなる順序対のあつまりである。別な言い方をすれば、直積集合 A2 = A × A の部分集合を、集合 A 上の二項
数学の特に初等解析学における二項級数(にこうきゅうすう、英: binomial series)は二項式の冪(べき)のマクローリン級数を言う。 具体的に、α を任意の複素数として、函数 f が f(x) = (1 + x)α で与えられるとき、マクローリン展開 ( 1 + x ) α = ∑ k =
項が二個あること。 また, 二個の項。
(1)〔数〕 単項式・多項式または方程式の各項において, ある変数に着目した際, その変数から成る単項式にかけられている数または文字。
二項ヒープは二項木の集合として実装される(二分ヒープと比較すると、二分ヒープは単一の二分木から構成される)。二項木は再帰的に定義される。 次数 0の二項木は1つのノードをもつ。 次数 k の二項木は一つの根(root)をもち、その子はそれぞれ次数 k-1, k-2, …, 2, 1, 0の二項木の親である。
に対しては: ダブルドット積(二重点乗積)の定義には二通りあり、何れの意味で用いる規約になっているのかは文脈に注意すべきである。この二項積同士の積に対応する行列の演算はなく、このような定義を持ち出すことに疑問は無かろう。 通常のドット積(点乗積)が可換であるため、このダブルドット積(二重点乗積)もまたそうなる:
代数学における二項多項式あるいは二項式(にこうしき、英: binomial)は、二つの項(各項はつまり単項式)の和となっている多項式をいう。二項式は単項式に次いで最も簡単な種類の多項式である。 二項式は二つの単項式の和となっている多項式をいうのだから、ひとつの不定元(あるいは変数)x に関する二項式
アインシュタイン係数(アインシュタインけいすう、英: Einstein coefficients)は、原子もしくは分子による光の吸収および放射の確率を評価する数学量。A係数は光の自然放出の確率と関連し、B係数は光の吸収および誘導放出に関連する値である。 物理学において、スペクトル線は2つの視点から考えることができる。