语言
没有数据
通知
无通知
になり、木の高さは N となる。木の形は挿入時のデータ出現順序に依存し、特にソート済みのデータを与えると線形リストになる点は注意を要する。データの出現順序によって大きく性能が劣化しないように、挿入・削除の際に木の平衡を取り直す処理を追加した二分探索木は平衡二分探索木と呼ばれる。 ルートから手順を開始する。
(1)さがしもとめること。
想配列や集合その他の抽象データ型を実装する最も効率のよいデータ構造の1つである。 二分探索木上の大半の操作にかかるコストは木の高さに比例するので木の高さは低く保つのが望ましい。通常の二分探索木の主要な欠点は、キーが辞書順に挿入されるような普通の状況で木の高さが大きくなってしまうということである。結
search tree)は、トライ木の各ノードを二分探索木として表現したデータ構造である。各ノードは文字列中の文字と以下の三つの子ノードを持つ。 その文字の代わりに、より小さな文字を指す左ノード その文字の代わりに、より大きな文字を指す右ノード その文字の次の文字を指す中央ノード
探索コスト(たんさくコスト、英: search cost)は取引コストやスイッチング・コストの一種で、情報収集や代案探索にかかる費用を意味する。 完全合理的な消費者であれば、効用を最大化するために、限界費用が限界便益を上回るまで、より良い商品やサービスを求めて探索
探索木とは、計算機科学において特定のキーを特定するために使用される木構造である。その木構造が探索木として機能するために、あるノードのキーは、そのノードの左の子ノードのキーよりは常に大きく、逆に右の子ノードのキーよりは常に小さい性質が必要である。 探索木はその木
黄金分割探索は、単峰関数の極値(極大値または極小値)を求める方法の一つで、極値が存在するとわかっている範囲を逐次的に狭めていく方法である。この方法は、常に3点の関数値を保持し、それらの距離の比が黄金比であることからこの名で呼ばれている。フィボナッチ探索や二分探索と密接な関係がある。フィボナッチ探索と黄金分割探索は(Kiefer
モンテカルロ木探索(モンテカルロきたんさく、英: Monte Carlo tree search、略称MCTS)とは、モンテカルロ法を使った木の探索の事。決定過程に対する、ヒューリスティクス(=途中で不要な探索をやめ、ある程度の高確率で良い手を導ける)な探索アルゴリズムである。 モンテカルロ木