语言
没有数据
通知
无通知
数学において、リー代数 (リーだいすう、Lie algebra)、もしくはリー環(リーかん)は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 [x, y] を備えたベクトル空間である。無限小変換(英語版) (infinitesimal transformation)
のシンププレクティック群であり、リー型の有限群である。G = GL(n, Fq) や SL(n, Fq) (他の例もある)とすると、G の標準ボレル部分群(英語版)(standard Borel subgroup) B は、G の上三角元からなる G の部分群である。G の標準放物型部分群(英語版)(standard
は数学定数の一つであり、しばしば自然対数の底と呼ばれる実数である。e は無理数であるため(ネイピア数の無理性の証明参照)通常の分数では表せないが、無限連分数で表すことはできる。また、解析学的手法を用いて級数や無限乗積、ある種の数列の極限としてe を表すことができる。 以下にネイピア数 e のいくつかの定義を示す。本項において e
の部分が指数部と仮数部に分かれている。 1の補数とは、数のビット毎の反転が符号を反転させるとする表現である。これはビット単位のNOT演算に他ならない。例えば、 0101 = +5 1010 = −5 1の補数でも符号-仮数部表現でも、ゼロの
(1)内面的・精神的・主体的な思想や感情などを, 外面的・客観的な形あるものとして表すこと。 また, その表れた形である表情・身振り・記号・言語など。 特に, 芸術的形象たる文学作品(詩・小説など)・音楽・絵画・造形など。
現在, 実際にある数量。
対数の数表(対数表)などである。 単純な例としては、整数の乗算に関する表(いわゆる九九)などであろう。これは算数の授業でほとんどの人が知ることになる。 7×8の結果を得たい場合、左端の列に書かれた「7」を探し、次いで「7の行」を右へ進んで「8の列」と交差するところで56という結果に至る(乗算の表
の代数的閉体上における有限次元既約表現とすると、すべての T(g) と可換な変換は恒等変換の定数倍に限られる。 また適当な相似変換によってブロック対角型になる(簡約できる)表現を直可約表現、直可約でない表現を直既約表現という。 有限群の同値でない複素数体上の有限次元既約表現の数は、群の共役類の数と等しい。