语言
没有数据
通知
无通知
数学において、二項分布(にこうぶんぷ、英: binomial distribution)は、成功確率 p で成功か失敗のいずれかの結果となる試行(ベルヌーイ試行と呼ばれる)を独立に n 回行ったときの成功回数を確率変数Xとする離散確率分布である。 二項分布に基づく統計的有意性の検定は、二項検定と呼ばれている。
\end{aligned}}} n を無限大に近づけると、4つの下波括弧のうち、最初の下波括弧の部分は 1 に近づく。2番目の下波括弧の部分には n が出現しないので、そのままである。3番目の下波括弧の部分は e−λ に近づく。最後の下波括弧の部分は 1 に近づく。 したがって極限は存在し、 λ k e
負の二項分布(ふのにこうぶんぷ、英: negative binomial distribution)は、離散確率分布の一つ。確率 p で成功する独立なベルヌーイ試行が繰り返された時の成功回数の分布を表すという意味で二項分布によく似ているが、負の二項分布では試行回数があらかじめ決められておらず、r
distribution)は、確率論において二項分布を一般化した確率分布である。 二項分布は、n 個の独立なベルヌーイ試行の「成功」の数の確率分布であり、各試行の「成功」確率は同じである。多項分布では、各試行の結果は固定の有限個(k 個)の値をとり、それぞれの値をとる確率は p1, …, pk(すなわち、i =
減る。あるいは、工場での品質管理で言えば、問題のない製品を捨てることが減って、損失が減ることになる。 感度と特異度の関係や分類器の性能は、受信者操作特性曲線を使って視覚化、研究できる。 理論上、感度と特異度は独立しており、共に100%を達成することも可能である(人間が青のボールと赤の
項が二個あること。 また, 二個の項。
(1)分かれてあちこちにあること。 また, 分けてあちこちに置くこと。
〖Siméon Denis Poisson〗