语言
没有数据
通知
无通知
この極の絶対値は2よりも小さいため、経路Cより内側にある。 この積分はコーシーの積分定理により2つの積分に分割できる。 経路Cの積分はz1 と z2の各極周囲の小さな円の経路積分の和で表される。 それぞれz1周囲の経路C1とz2周囲の経路C2と呼ぶ。これらのそれぞれ積分は、コーシー積分
このようにして期待どおり逆二乗則が得られる。軌道パラメータ h2/l を GM もしくは keq1q2/m のような物理的値に置き換えれば、それぞれニュートンの万有引力の法則やクーロンの法則が得られる。 シュワルツシルト座標における実効力は次のように得られる。 ここで、第二項は近点移動などの四重極子効果に対応する逆四乗則
コーシー オーギュスタン=ルイ・コーシー - フランスの数学者。 コーシー (クレーター) まれにコーヒーをさすこともある。 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選んで下さ
数学におけるコーシー=シュワルツの不等式(コーシーシュワルツのふとうしき、英: Cauchy–Schwarz inequality)、シュワルツの不等式、シュヴァルツの不等式あるいはコーシー=ブニャコフスキー=シュワルツの不等式 (Cauchy–Bunyakovski–Schwarz inequality)
数学の複素解析の分野において、コーシー・リーマンの方程式(英: Cauchy–Riemann equations)は、2つの偏微分方程式からなる方程式系であり、連続性と微分可能性と合わせて、複素関数が複素微分可能すなわち正則であるための必要十分条件をなす。コーシー・リーマンの関係
(1)おおやけに決められている方式や形式。 またそれにのっとって物事を行うこと。
数学の実解析におけるコーシーの函数方程式(コーシーのかんすうほうていしき、英: Cauchy's functional equation)は、オーギュスタン・ルイ・コーシーがその著書『解析教程』において扱ったことに名を因む、 f ( x + y ) = f ( x ) + f ( y ) {\displaystyle
シンプソンの公式(シンプソンのこうしき、英: Simpson's rule)とは、数値解析の分野における、数値積分の方法の一つである。定積分 ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} の近似値を、関数 f(x)