语言
没有数据
通知
无通知
フィッツの結果を再現するような実験、また若干異なる条件でフィッツの法則が適用できることを示す実験は、比較的たやすく実施することができる。そうした実験では、相関係数 0.95 以上、すなわちモデルが非常に正確であるという結果が出ることも多い。 フィッツ自身は法則について二本の論文しか発表しなかったが(1954
シャルルの法則(英語: Charles's law)とは、一定の圧力の下で、気体の体積の温度変化に対する依存性を示した法則である。シャールの法則ともいう。1787年にジャック・シャルルが発見し、1802年にジョセフ・ルイ・ゲイ=リュサックによって初めて発表された。 この発表以前の
ドルトンの法則(ドルトンのほうそく、英語: Dalton's law)、あるいは分圧の法則とは、理想気体の混合物の圧力が各成分の分圧の和に等しいことを主張する法則である。 1801年にジョン・ドルトンにより発見された。 この法則は、気体が理想的な混合をしている系における近似法則
レンツの法則(レンツのほうそく、英: Lenz's law)とは、19世紀のロシアの物理学者、ハインリヒ・レンツによって発見された電磁誘導に関する法則のこと。 何らかの原因によって誘導電流が発生する場合、電流の流れる方向は誘導電流の原因を妨げる方向と一致するというもの。例えばコイルに軸方向から棒磁石
オームの法則(オームのほうそく、英語: Ohm's law)とは、導電現象において、電気回路の部分に流れる電流とその両端の電位差の関係を主張する法則である。クーロンの法則とともに電気工学で最も重要な関係式の一つである。 1781年にヘンリー・キャヴェンディッシュが発見したが、その業績は死後数十年し
キルヒホッフの法則(キルヒホッフのほうそく) キルヒホッフの法則 (電気回路) - 電気回路に関する法則。 キルヒホッフの法則 (放射エネルギー) - 放射エネルギーに関する法則。 キルヒホッフの法則 (反応熱) - 反応熱に関する法則。 このページは曖昧さ回避のためのページです。一つの
グスタフソンの法則は、計算機の規模が大きくなると利用可能な計算能力を使い切るほど性能がスケールしないというアムダールの法則に欠けていた部分に対応するものである。グスタフソンの法則では、問題の規模が固定である、また並列プロセッサ上の計算の負荷が一定であるという仮定を取り除き、代わりに固定時間の
ベンフォードの法則(ベンフォードのほうそく、Benford's law)とは、自然界に出てくる多くの(全てのではない)数値の最初の桁の分布が、一様ではなく、ある特定の分布になっている、という法則である。この法則によれば、最初の桁が1である確率はほぼ3分の1にも達し、大きな数値ほど最初の